Bayesian learning

Friday july 28 at 17:00
Rutherford Physics Building, Room 118, McGill

Next week, I’ll be talking about Bayesian learning at the Mathematical congress of the americas and at the Canadian undergraduate mathematics conference. These are somewhat challenging talks: I need to sell the idea of Bayesian statistics to a general mathematical audience (which knows nothing about it), interest them in some though problems of Bayesian nonparametrics, and then present some of our research results. This must be done in under 20 minutes.

To make the presentation more intuitive and accessible, I borrowed some language from machine learning. I’m talking about learning rather than inference, uncertain knowledge rather than subjective belief, and “asymptotic correctness” rather than consistency. These are essentially synonymous, although some authors might use them in different ways. This should not cause problems for this introductory talk.Read More »

Approximation

Présentation (20 minutes) au séminaire du 5e.

Je présente le théorème d’approximation de Weierstrass pour les fonctions périodiques, en utilisant une base des polynômes trigonométriques récemment suggérée par Róth et al. (2009). Celle-ci se prête naturellement bien à notre application.

Théorème d’approximation de Weierstrass.
Soit f : \mathbb{R} \rightarrow \mathbb{R} une fonction 2\pi-périodique. Si f est continue, alors on peut construire des polynômes trigonométriques f_1, f_2, f_3, \dots tels que

f(x) = \sum_{i=1}^{\infty} f_i(x)

et tels que la convergence de la série ci-dessus est uniforme.

Ce théorème intervient dans plusieurs domaines: en topologie pour démontrer le théorème du point fixe de Brouwer, en géométrie pour l’inégalité isopérimétrique et en géométrie algébrique pour le théorème de Nash-Tognoli. Il implique que \{1, \cos(x), \sin(x), \cos(2x), \sin(2x), \dots\}, en tant que système orthonormal, est complèt dans L^2(\mathbb{S}^1). Plus généralement, on s’en sert pour ramener un problème sur les fonctions continues à un problème sur les polynômes, où le calcul différentiel et l’algèbre linéaire s’appliquent. Les démonstrations constructives du théorème fournissent de plus des outils permettant d’effectuer la régression ou la reconstruction de courbes et de surfaces.Read More »